Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Emerg Microbes Infect ; 12(1): e2164218, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2187798

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels and causes zoonotic infection and disease in humans. Although over 80% of the global population of infected dromedary camels are found in Africa, zoonotic disease had only been reported in the Arabia Peninsula and travel-associated disease has been reported elsewhere. In this study, genetic diversity and molecular epidemiology of MERS-CoV in dromedary camels in Ethiopia were investigated during 2017-2020. Of 1766 nasal swab samples collected, 61 (3.5%) were detected positive for MERS-CoV RNA. Of 484 turbinate swab samples collected, 10 (2.1%) were detected positive for MERS-CoV RNA. Twenty-five whole genome sequences were obtained from these MERS-CoV positive samples. Phylogenetically, these Ethiopian camel-originated MERS-CoV belonged to clade C2, clustering with other East African camel strains. Virus sequences from camel herds clustered geographically while in an abattoir, two distinct phylogenetic clusters of MERS-CoVs were observed in two sequential sampling collections, which indicates the greater genetic diversity of MERS-CoV in abattoirs. In contrast to clade A and B viruses from the Arabian Peninsula, clade C camel-originated MERS-CoV from Ethiopia had various nucleotide insertions and deletions in non-structural gene nsp3, accessory genes ORF3 and ORF5 and structural gene N. This study demonstrates the genetic instability of MERS-CoV in dromedaries in East Africa, which indicates that the virus is still actively adapting to its camel host. The impact of the observed nucleotide insertions and deletions on virus evolution, viral fitness, and zoonotic potential deserves further study.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Camelus , Filogenia , Etiopía/epidemiología , Epidemiología Molecular , Viaje , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Zoonosis/epidemiología , Variación Genética , ARN
2.
Sci Rep ; 11(1): 24145, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1585802

RESUMEN

Recent studies suggest that coronaviruses circulate widely in Southeast Asian bat species and that the progenitors of the SARS-Cov-2 virus could have originated in rhinolophid bats in the region. Our objective was to assess the diversity and circulation patterns of coronavirus in several bat species in Southeast Asia. We undertook monthly live-capture sessions and sampling in Cambodia over 17 months to cover all phases of the annual reproduction cycle of bats and test specifically the association between their age and CoV infection status. We additionally examined current information on the reproductive phenology of Rhinolophus and other bat species presently known to occur in mainland southeast China, Vietnam, Laos and Cambodia. Results from our longitudinal monitoring (573 bats belonging to 8 species) showed an overall proportion of positive PCR tests for CoV of 4.2% (24/573) in cave-dwelling bats from Kampot and 4.75% (22/463) in flying-foxes from Kandal. Phylogenetic analysis showed that the PCR amplicon sequences of CoVs (n = 46) obtained clustered in Alphacoronavirus and Betacoronavirus. Interestingly, Hipposideros larvatus sensu lato harbored viruses from both genera. Our results suggest an association between positive detections of coronaviruses and juvenile and immature bats in Cambodia (OR = 3.24 [1.46-7.76], p = 0.005). Since the limited data presently available from literature review indicates that reproduction is largely synchronized among rhinolophid and hipposiderid bats in our study region, particularly in its more seasonal portions (above 16° N), this may lead to seasonal patterns in CoV circulation. Overall, our study suggests that surveillance of CoV in insectivorous bat species in Southeast Asia, including SARS-CoV-related coronaviruses in rhinolophid bats, could be targeted from June to October for species exhibiting high proportions of juveniles and immatures during these months. It also highlights the need to develop long-term longitudinal surveys of bats and improve our understanding of their ecology in the region, for both biodiversity conservation and public health reasons.


Asunto(s)
Alphacoronavirus/genética , Betacoronavirus/genética , COVID-19/transmisión , Quirópteros/crecimiento & desarrollo , SARS-CoV-2/genética , Alphacoronavirus/clasificación , Animales , Asia Sudoriental/epidemiología , Betacoronavirus/clasificación , COVID-19/epidemiología , COVID-19/virología , Cambodia/epidemiología , Quirópteros/clasificación , Quirópteros/virología , Epidemias/prevención & control , Evolución Molecular , Genoma Viral/genética , Geografía , Humanos , Estudios Longitudinales , Masculino , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología , Especificidad de la Especie
3.
Front Public Health ; 8: 616328, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1081274

RESUMEN

The past two decades have seen an accumulation of theoretical and empirical evidence for the interlinkages between human health and well-being, biodiversity and ecosystem services, and agriculture. The COVID-19 pandemic has highlighted the devastating impacts that an emerging pathogen, of animal origin, can have on human societies and economies. A number of scholars have called for the wider adoption of "One Health integrated approaches" to better prevent, and respond to, the threats of emerging zoonotic diseases. However, there are theoretical and practical challenges that have precluded the full development and practical implementation of this approach. Whilst integrated approaches to health are increasingly adopting a social-ecological system framework (SES), the lack of clarity in framing the key concept of resilience in health contexts remains a major barrier to its implementation by scientists and practitioners. We propose an operational framework, based on a transdisciplinary definition of Socio-Ecological System Health (SESH) that explicitly links health and ecosystem management with the resilience of SES, and the adaptive capacity of the actors and agents within SES, to prevent and cope with emerging health and environmental risks. We focus on agricultural transitions that play a critical role in disease emergence and biodiversity conservation, to illustrate the proposed participatory framework to frame and co-design SESH interventions. Finally, we highlight critical changes that are needed from researchers, policy makers and donors, in order to engage communities and other stakeholders involved in the management of their own health and that of the underpinning ecosystems.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Ecosistema , Salud Pública , Animales , Biodiversidad , Enfermedades Transmisibles Emergentes , Humanos , Zoonosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA